Exercise 12

Let L_{n} denote the left-endpoint sum using n subintervals and let R_{n} denote the corresponding right-endpoint sum. In the following exercises, compute the indicated left and right sums for the given functions on the indicated interval.

$$
L_{4} \text { for } f(x)=\frac{1}{x-1} \text { on }[2,3]
$$

Solution

Since we're using the left-endpoint sum with $n=4$ to approximate the integral of $f(x)$ from 2 to 3 , the sum is taken from 0 to 3 rather than 1 to 4 .

$$
\begin{aligned}
\int_{2}^{3} f(x) d x \approx \sum_{i=0}^{3} f\left(x_{i}\right) \Delta x & =\sum_{i=0}^{3} \frac{1}{x_{i}-1} \Delta x \\
& =\sum_{i=0}^{3} \frac{1}{(2+i \Delta x)-1} \Delta x \\
& =\sum_{i=0}^{3} \frac{1}{1+i \Delta x} \Delta x \\
& =\sum_{i=0}^{3} \frac{1}{1+i\left(\frac{3-2}{4}\right)}\left(\frac{3-2}{4}\right) \\
& =\sum_{i=0}^{3} \frac{1}{1+i\left(\frac{1}{4}\right)}\left(\frac{1}{4}\right) \\
& =\sum_{i=0}^{3} \frac{1}{4+i} \\
& =\frac{1}{4+0}+\frac{1}{4+1}+\frac{1}{4+2}+\frac{1}{4+3} \\
& =\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7} \\
& =\frac{319}{420} \\
& \approx 0.760
\end{aligned}
$$

